強相関系理論 藤本研究室

http://www.fujimotolab.mp.es.osaka-u.ac.jp

スタッフ:藤本聡,水島健,鶴田篤史

当研究室では主に電子間のクーロン斥力が非常に強いため、従来のバンド理論では記述できない強相関 電子系(例えば高温超伝導体や重い電子系と呼ばれるf-電子系物質等)で実現する新しい量子凝縮相の理 論研究を行っています。特に従来の枠組みを越えた新奇な超伝導、量子磁性、およびトポロジカル絶縁体・ 超伝導等がメイン・テーマです。

新奇な超伝導

磁石と共存する超伝導体UCoGeの非BCS超伝導機構解明

UCoGeという物質はキュリー温度が3K程度の強磁性体です。ところが、 キュリー温度よりも低温の0.8Kくらいで超伝導になります。これは磁石 としての性質を残したまま超伝導になっているとてもユニークな状態です。 従来の超伝導体はBCS理論でよく理解できますが、UCoGeのように磁石 h а と共存する超伝導をBCS理論で説明することはできません。我々は実験 グループとの共同研究によって、この物質の超伝導の起源を明らかにすることに成功しました。 分かったことは、この超伝導は従来の電子-格子相互作用による引力ではなく、磁気的な相互 作用による引力でクーパー対が形成されており、しかもスピンが同じ向きの電子が対を組んで いるので、超伝導電流は超伝導スピン流も運んでいるということです。

量子臨界と超伝導 UCoGeに見られた磁気的相互作用による超伝導はもっと 一般に量子臨界点近傍に現れる超伝導現象として包括的 に理解できます。従来の超伝導体では、結晶格子のゆらぎ

を介して2個の電子の間に引力が働き、これによって生じた 電子対が凝縮して超伝導が起こります。(BCS理論) これに 対して、UCoGeや、その他多くの強相関超伝導物質では、 磁気的相転移点近傍でかつ十分低温で発達した磁気的な ゆらぎを使って、電子同士が結びつき超伝導になっています。

空間並進対称性を自発的に破った超伝導: Fulde-Ferrell-Larkin-Ovchinnikov 超伝導

一様磁場下でのスピン1重項超伝導状態の安定性は「反磁性効果」と「常磁性効 果」という2種類の対破壊効果の競合の結果として決定されます。後者は一様磁 場が電子の持つ磁気モーメントと結合することに起因します。この効果が顕著な 状況では、フェルミ面の「ずれ」のため、通常の BCS 理論と異なり、有限の重心運 動量 Q を持ったクーパー対が形成されます(FFLO 状態)。

0.8

0.6

0.4

0.2

BCS

 Q_2 -FFLO

FFLO状態は空間の並進対称性を自発的に破った超伝導状態であ り、常磁性磁化と超伝導性が共存した特異な量子状態です。1964 年に Fulde と Ferrell 及び Larkin と Ovchinnikov によって独立に提 案されて以来、その研究舞台は超伝導体のみならず、冷却原子気 体や中性子星等の高エネルギー物理分野へ広がりを見せています。 また、多バンド超伝導体では様々な有理数の空間変調波数を持つ FFLO状態が競合し、「悪魔の階段的相転移」を示すことが理論的に 指摘される等、質的に新しい物理を内在しています。

トポロジカル量子輸送現象

$\mu_{\rm B} H / \Delta_{1.0}$ カイラル磁性体におけるスキルミオン、モノポー ール ---新しい磁気メモリ?---

カイラル磁性体と呼ばれるある種の磁性体では、電子スピンが右図のよう に渦構造をとるものがあります。このスピン渦は「スキルミオン」と呼ばれて います。スキルミオンは元々、素粒子論で提唱された仮想粒子で、これと同 じトポロジカルな性質を磁気スキルミオンは持ちます。磁気スキルミオンは 新しい磁気メモリになる可能性があり、スピントロニクスの分野でも注目され ています。面白いことに磁気スキルミオンは伝導電子に対して電磁場と同じ 作用を及ぼします。このため、本当の磁場が存在しなくてホール効果が起こ るなど、新奇な物理現象が発見されています。さらに最近は磁気スキルミオ ンの生み出す仮想磁場はモノポール(磁石のN極やS極を単独に取り出し仮 想的粒子)を伴うことが分かってきて、それと電子との相互作用による新し い物性現象も理論的に予言されています。

0.8

0.6

0.4

0.2

9

0.6

BCS

0.4

 Q_1 -FFLO

0.7

Normal

Norma

FFLO

0.8

0.8

磁気モノポール 磁気スキルミオンの格子

トポロジカル絶縁体・超伝導体

トポロジカル絶縁体・超伝導体とは、その量子力学的な状態空間が、 「メビウスの輪」のようにトポロジカルに非自明な構造を有し、そのため に従来の固体電子物性の範疇を越えた新しい物理現象を生み出す物 質群のことです。

たとえば、スピン軌道相互作用の強いある種のバンド絶縁体では、右 図のように電子スピンの配置が運動量空間でねじれた構造を持ち、トポ ロジカル・バンド絶縁体となります。(右図で"猫"は電子スピン等の内部 自由度を模式的に表しています)

このような系はバンド絶縁体なので物質内部では電気を流さないのですが、試料 の表面に金属状態が現れ、しかもそれが、通常の金属とは異なり、ディラック粒子 という相対論的量子力学に従う振る舞いを示します。さらにこの表面ディラック粒子 は、不純物散乱に対して安定に存在することができ、なおかつスピン流を運ぶとい う特徴があります。それゆえスピントロニクスへの応用も期待されています。

トポロジカル絶縁体では、通常の電磁気学とは異なるアクシオン (Axion)電磁気現象が発現することが知られています。アクシオン とは素粒子物理学で提唱された仮想粒子で、これが存在すると マックスウエル方程式が著しく変更されます。これと同様の現象 がトポロジカル絶縁体で実現できることが理論的に明らかになっ ています。電場で磁化を誘起したり、磁場で電気分極を誘起する など、トポロジカル磁気電気効果と呼ばれる応用上も興味深い 現象が予言されています。

超伝導体におけるマヨラナ・フェルミオンの実現と量子情報への応用

このようなトポロジカルな量子状態は、超伝導や超流動状態でも実現し、トポ ロジカル超伝導体・超流動体と呼ばれています。トポロジカル超伝導体では 試料表面に現れる低エネルギー 粒子が前述の ディラック粒子ではなく、マヨラ ナ粒子になります。マヨラナ粒子とは素粒子物理学で予言されている粒子で、 反粒子(反物質)と粒子(物質)が同一であるという際立った性質を持ちます。

さらに、トポロジカル超伝導体におけるマヨラナ粒子は、ボゾンでもフェルミオンでもない、新しい量子統計に従う奇妙な粒 子であることが知られています。 また、その性質を利用して、これを量子計算に応用することが提案されており、世界中で 活発に研究が行われています。

トポロジカル超伝導体は非可換統計に従うマヨラナ粒子のホスト物質 として、そしてトポロジカル量子演算実現のためのプラットフォームとして、 基礎科学および応用の両面で重要な価値を秘めています。一方で、従 来の理論では、ごく限られた物質のみがその候補であると考えられてい ました。

c)

-π

しかしながら、我々の最近の研究成果により、物質の結晶対称性がト ポロジカル超伝導特性とマヨラナ粒子を「守っている」ということが明らか になりました。これにより、重い電子系超伝導UPtaやSraRuOa等の非従来 型超伝導物質の多くがトポロジカル超伝導体である可能性が指摘され ています。また、トポロジカル絶縁体にキャリアをドープして得られる超 伝導体もトポロジカル超伝導の有力候補です。世界中でマヨラナ粒子を 伴う超伝導物質の発見に向けた熾烈な競争が展開されています。

(左)s波超伝導体と半導体ナノワイヤの 接合系で実現される鏡映対 称性によっ て守られたトポロジカル超伝導の一例

(右)UPt3の表面に現れる結晶対称性 によって守られたマヨラナ状態

Ε

超流動³He エキゾチック超伝導・トポロジカル超伝導の物理の教科書的物質

³He原子は質量が小さいために量子力学的な零点振動が大きく、そのため常圧下では絶対零度でも液体であり続け ます。この量子液体は数mK以下においてスピン3重項p波超流動状態へ相転移します。温度・圧力を変えることで、時 間反転対称性を保ったB相から時間反転対称性を自発的に破ったA相へ多重超流動相転移します。超流動³Heは、そ の発見以来、異方的超伝導研究の教科書的物質として、基礎科学において重要な立ち位置にありました。近年になり、 トポロジカル超伝導性が確立した数少ない物質として、学術的価値が再注目されています。

³Heは液体であるために、超流動状態でも非常に高い対称性を保っていま す。この対称性が超流動³Heのトポロジカルな性質を守っていることが分か りました。さらに、磁場を印加することで、自発的対称性の破れとトポロジカ ル相転移が同時に起こる量子相転移が存在します。この他にも、超伝導の FFLO状態に類似した空間並進対称性を自発的に破った超流動状態の存在 や多彩なトポロジカル励起の予言等、エキゾチック超伝導・トポロジカル超 伝導の物理の宝庫です。

磁場中超流動。Heのトホロシカル相図(上) と表面マヨラナ状態の分散(下)

冷却原子気体ボース・アインシュタイン凝縮

トポロジカル励起研究のフロンティア

粒子の従う統計性には、大きく分けて、フェルミ統計とボース統計があります。前者の代表例は電子で、その粒 子間にはパウリの排他原理に起因した量子統計的斥力が働きます。その結果、フェルミ粒子系は超伝導・磁性と いった多彩な物性や機能性を紡ぎだします。一方のボース統計に従う粒子間には統計的引力が働くため、極低温 においてボース粒子の集団は運動量空間(と場合によっては実空間)において「凝縮」します。このボース・アイン シュタイン凝縮と呼ばれる量子現象は1920年代に理論的に予言されていましたが、近年になり⁸⁷Rb等の中性原子 をnK程度の極低温に冷却することで実現しました。この凝縮したボース粒子集団はまるで一つの巨視的物質波と して振る舞うため、量子力学の世界を直接観測することが可能です。特に、現代物理学の根幹を支える場の理論 で重要な役割を演じている「トポロジカル励起」の実験的検証の為の理想的な研究舞台として注目されています。

3次元スカーミオン構造(上) とテクスチャ(左)

トポロジカル励起である量子渦糸の量子ダイナミクス (ケルビン波モード)

非フェルミ液体

PrV₂Al₂₀, PrIr₂Zn₂₀における非フェルミ液体の解明

多くのCe類化合物では低温で電気抵抗が温度の2乗に比例し、磁化率が温度に寄らない、比熱が温度に比例するなどの特徴があります。この系はフェルミ液体と呼ばれ、理論的にも明らかにされています。

ところが最近発見されたPrV₂Al₂₀, PrIr₂Zn₂₀では電気抵抗がに比例し、比熱と磁化 率は降温とともに増加します。これらの振る舞いは従来の理論では説明できず、非 フェルミ液体と呼ばれます。またこれらの物質は超伝導に転移し、新しいメカニズム による超伝導転移であると考えられています。

我々はこれらのPr化合物の特徴である状態を正確に表すモデルに対して正確な計 算を行うことにより、非フェルミ液体の振る舞いを理論的に明らかにし、実験を再現 することに成功しました。

広島大学鬼丸らによるPrIr₂Zn₂₀の電気抵抗 の温度依存性(黒)、 我々の理論計算結果(赤)